Simulation of colliding constrained rigid bodies
نویسنده
چکیده
I describe the development of a program to simulate the dynamic behaviour of interacting rigid bodies. Such a simulation may be used to generate animations of articulated characters in 3D graphics applications. Bodies may have an arbitrary shape, defined by a triangle mesh, and may be connected with a variety of different joints. Joints are represented by constraint functions which are solved at run-time using Lagrange multipliers. The simulation performs collision detection and prevents penetration of rigid bodies by applying impulses to colliding bodies and reaction forces to bodies in resting contact. The simulation is shown to be physically accurate and is tested on several different scenes, including one of an articulated human character falling down a flight of stairs. An appendix describes how to derive arbitrary constraint functions for the Lagrange multiplier method. Collisions and joints are both represented as constraints, which allows them to be handled with a unified algorithm. The report also includes some results relating to the use of quaternions in dynamic simulations.
منابع مشابه
STRUCTURAL RELIABILITY ASSESSMENT UTILIZING FOUR METAHEURISTIC ALGORITHMS
The failure probability of the structures is one of the challenging problems in structural engineering. To obtain the reliability index introduced by Hasofer and Lind, one needs to solve a nonlinear equality constrained optimization problem. In this study, four of the most recent metaheuristic algorithms are utilized for finding the design point and the failure probability of problems with cont...
متن کاملSTATIC AND DYNAMIC OPPOSITION-BASED LEARNING FOR COLLIDING BODIES OPTIMIZATION
Opposition-based learning was first introduced as a solution for machine learning; however, it is being extended to other artificial intelligence and soft computing fields including meta-heuristic optimization. It not only utilizes an estimate of a solution but also enters its counter-part information into the search process. The present work applies such an approach to Colliding Bodies Optimiz...
متن کاملSiLVIA - A Simulation Library for Virtual Reality Applications
The main purpose of SiLVIA is to supply procedures for simulating the dynamics of colliding rigid bodies and the interactive manipulation of these bodies in virtual environments. Detecting collisions between virtual objects and calculating their reaction to these collisions play an important role in VR applications such as ergonomy studies or virtual assembly simulations.
متن کاملCOMPUTER CODES FOR COLLIDING BODIES OPTIMIZATION AND ITS ENHANCED VERSION
Colliding bodies optimization (CBO) is a new population-based stochastic optimization algorithm based on the governing laws of one dimensional collision between two bodies from the physics. Each agent is modeled as a body with a specified mass and velocity. A collision occurs between pairs of objects to find the global or near-global solutions. Enhanced colliding bodies optimization (ECBO) uses...
متن کاملANALYSIS AND DESIGN OF WATER DISTRIBUTION SYSTEMS VIA COLLIDING BODIES OPTIMIZATION
This paper describes the application of the recently developed metaheuristic algorithm for simultaneous analysis, design and optimization of Water Distribution Systems (WDSs). In this method, analysis is carried out using Colliding Bodies Optimization algorithm (CBO). The CBO is a population-based search approach that imitates nature’s ongoing search for better solutions. Also, design and cost ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007